Part Number Hot Search : 
C102M F05U60 WRB1215 71101 P3601MSH GBPC4016 DG2031 MM3Z5521
Product Description
Full Text Search
 

To Download APT35GN120BG Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  050-7601 rev d 7-2009 apt35gn120b_s(g) typical performance curves maximum ratings all ratings: t c = 25c unless otherwise speci? ed. static electrical characteristics characteristic / test conditions collector-emitter breakdown voltage (v ge = 0v, i c = 250a) gate threshold voltage (v ce = v ge , i c = 1ma, t j = 25c) collector-emitter on voltage (v ge = 15v, i c = 35a, t j = 25c) collector-emitter on voltage (v ge = 15v, i c = 35a, t j = 125c) collector cut-off current (v ce = 1200v, v ge = 0v, t j = 25c) 2 collector cut-off current (v ce = 1200v, v ge = 0v, t j = 125c) 2 gate-emitter leakage current (v ge = 20v) intergrated gate resistor symbol v (br)ces v ge(th) v ce(on) i ces i ges r gint units volts ana symbol v ces v ge i c1 i c2 i cm ssoa p d t j ,t stg t l apt35gn120b_s(g) 1200 30 9446 105 105a @ 1200v 379 -55 to 150 300 unit volts amps watts c parameter collector-emitter voltage gate-emitter voltage continuous collector current @ t c = 25c continuous collector current @ t c = 110c pulsed collector current 1 @ t c = 150c switching safe operating area @ t j = 150c total power dissipation operating and storage junction temperature range max. lead temp. for soldering: 0.063" from case for 10 sec. caution: these devices are sensitive to electrostatic discharge. proper handling procedures should be followed. utilizing the latest non-punch through (npt) field stop technology, these igbt?s have a very short, low amplitude tail current and low eoff. the trench gate design results in superior v ce(on) performance. easy paralleling results from very tight parameter distribution and slightly positive v ce(on) temperature coef? cient. built-in gate resistance ensures ultra-reliable operation. low gate charge simpli? es gate drive design and minimizes losses. ? 1200v npt field stop ? trench gate: low v ce(on) ? easy paralleling ? 10s short circuit capability ? intergrated gate resistor: low emi, high reliability applications : welding, inductive heating, solar inverters, smps, motor drives, ups min typ max 1200 5 5.8 6.5 1.4 1.7 2.1 1.9 100 tbd 600 6 g c e apt35gn120b apt35gn120s APT35GN120BG apt35gn120sg 1200v *g denotes rohs compliant, pb free terminal finish. t o - 2 4 7 g c e d 3 pak g c e (s) (b) microsemi website - http://www.microsemi.com downloaded from: http:///
050-7601 rev d 7-2009 apt35gn120b_s(g) dynamic characteristics symbol c ies c oes c res v gep q g q ge q gc ssoa scsoa t d(on) t r t d(off) t f e on1 e on2 e off t d(on) t r t d(off) t f e on1 e on2 e off test conditions capacitance v ge = 0v, v ce = 25v f = 1 mhz gate charge v ge = 15v v ce = 600v i c = 35a t j = 150c, r g = 2.2 7 , v ge = 15v, l = 100h,v ce = 1200v v cc = 960v, v ge = 15v, t j = 125c, r g = 2.2 7 inductive switching (25c) v cc = 800v v ge = 15v i c = 35a r g = 2.2 7 t j = +25c inductive switching (125c) v cc = 800v v ge = 15v i c = 35a r g = 2.2 7 t j = +125c characteristicinput capacitance output capacitance reverse transfer capacitance gate-to-emitter plateau voltage total gate charge 3 gate-emitter charge gate-collector ("miller ") charge switching safe operating area short circuit safe operating area turn-on delay time current rise time turn-off delay time current fall time turn-on switching energy 4 turn-on switching energy (diode) 5 turn-off switching energy 6 turn-on delay time current rise time turn-off delay time current fall time turn-on switching energy 4 4 turn-on switching energy (diode) 5 5 turn-off switching energy 6 6 min typ max 2500 150 120 9.5 220 15 130 105 10 24 22 300 55 tbd 2395 2315 24 22 365 100 tbd 3745 3435 unit pf v nc a s ns j ns j unit c/w gm min typ max .33 n/a 5.9 characteristic junction to case (igbt) junction to case (diode) package weight symbol r jc r jc w t thermal and mechanical characteristics 1 repetitive rating: pulse width limited by maximum junction temperature. 2 for combi devices, i ces includes both igbt and fred leakages 3 see mil-std-750 method 3471. 4 e on1 is the clam ped inductive turn-on-energy of the igbt only, without the effect of a commutating diode reverse recovery current adding to the igbt turn-on loss. (see figure 24.) 5 e on2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the igbt turn-on switching loss. (see figures 21, 22.) 6 e off is the clamped inductive turn-off energy measured in accordance with jedec standard jesd24-1. (see figures 21, 23.) 7 r g is external gate resistance, not including r gint nor gate driver impedance. (mic4452) microsemi reserves the right to change, without notice, the speci? cations and information contained herein. downloaded from: http:///
050-7601 rev d 7-2009 apt35gn120b_s(g) typical performance curves bv ces , collector-to-emitter breakdown v ce , collector-to-emitter voltage (v) i c , collector current (a) i c , collector current (a) voltage (normalized) i c, dc collector current(a) v ce , collector-to-emitter voltage (v) v ge , gate-to-emitter voltage (v) i c , collector current (a) i c = 35a t j = 25c 250s pulse test<0.5 % duty cycle 120100 8060 40 20 0 100 8060 40 20 04 3.5 3 2.5 2 1.51.0 0.5 0 1.101.05 1.00 0.95 0.90 120100 8060 40 20 0 1614 12 10 86 4 2 0 3 2.5 2 1.5 1 0.5 0 140120 100 8060 40 20 0 v ce = 600v v ce = 240v v ce = 960v v ce , collecter-to-emitter voltage (v) v ce , collecter-to-emitter voltage (v) figure 1, output characteristics(t j = 25c) figure 2, output characteristics (t j = 125c) v ge , gate-to-emitter voltage (v) gate charge (nc) figure 3, transfer characteristics figure 4, gate charge v ge , gate-to-emitter voltage (v) t j , junction temperature (c) figure 5, on state voltage vs gate-to- emitter voltage figure 6, on state voltage vs junction temperature t j , junction temperature (c) t c , case temperature (c) figure 7, breakdown voltage vs. junction temperature figure 8, dc collector current vs case temperature 15v 11v 9v 8v 12v 10v 7v 15v 11v 10v 9v 12v 8v 7v t j = 125c t j = 25c t j = -55c t j = 25c. 250s pulse test <0.5 % duty cycle i c = 70a i c = 35a i c = 17.5a v ge = 15v. 250s pulse test <0.5 % duty cycle i c = 70a i c = 35a i c = 17.5a 0 2 4 6 8 10 12 0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14 0 50 100 150 200 250 8 10 12 14 16 -50 -25 0 25 50 75 100 125 -50 -25 0 25 50 75 100 125 -50 -25 0 25 50 75 100 125 150 lead temperature limited lead temperature limited downloaded from: http:///
050-7601 rev d 7-2009 apt35gn120b_s(g) v ge =15v,t j =125c v ge =15v,t j =25c v ce = 800v r g = 2.2 l = 100 h switching energy losses (j) e on2 , turn on energy loss (j) t r, rise time (ns) t d(on) , turn-on delay time (ns) switching energy losses (j) e off , turn off energy loss (j) t f, fall time (ns) t d (off) , turn-off delay time (ns) i ce , collector to emitter current (a) i ce , collector to emitter current (a) figure 9, turn-on delay time vs collector current figure 10, turn-off delay time vs collector current i ce , collector to emitter current (a) i ce , collector to emitter current (a) figure 11, current rise time vs collector current figure 12, current fall time vs collector current i ce , collector to emitter current (a) i ce , collector to emitter current (a) figure 13, turn-on energy loss vs collector current figure 14, turn off energy loss vs collector current r g , gate resistance (ohms) t j , junction temperature (c) figure 15, switching energy losses vs. gate resistance figure 16, switching energy losses vs junction temperature v ce = 800v v ge = +15v r g = 2.2 r g = 2.2 , l = 100 h, v ce = 800v v ce = 800v t j = 25c , t j =125c r g = 2.2 l = 100 h 3025 20 15 10 50 8070 60 50 40 30 20 10 0 1200010000 80006000 4000 2000 0 2500020000 15000 10000 5000 0 v ge = 15v t j = 25c, v ge = 15v v ce = 800v v ge = +15v r g = 2.2 v ce = 800v v ge = +15v r g = 2.2 e on2, 70a e off, 70a e off, 35a e on2, 35a e on2, 17.5a e off, 17.5a e on2, 70a e off, 70a e on2, 35a e off, 35a e on2, 17.5a e off, 17.5a v ce = 800v v ge = +15v t j = 125c r g = 2.2 , l = 100 h, v ce = 800v 450350 300 250 200 150 100 50 0 150125 100 7550 25 0 80007000 6000 5000 4000 3000 2000 1000 0 1200010000 80006000 4000 2000 0 t j = 125c, v ge = 15v t j = 25c, v ge = 15v t j = 25c,v ge = 15v t j = 125c,v ge = 15v t j = 125c, v ge = 15v t j = 25 or 125c,v ge = 15v 10 20 30 40 50 60 70 80 10 20 30 40 50 60 70 80 10 20 30 40 50 60 70 80 10 20 30 40 50 60 70 80 10 20 30 40 50 60 70 80 10 20 30 40 50 60 70 80 0 10 20 30 40 50 0 25 50 75 100 125 downloaded from: http:///
050-7601 rev d 7-2009 apt35gn120b_s(g) typical performance curves 0.350.30 0.25 0.20 0.15 0.10 0.05 0 z jc , thermal impedance (c/w) 0.3 0.9 0.7 single pulse rectangular pulse duration (seconds) figure 19, maximum effective transient thermal impedance, junction-to-case vs pulse duration 10 -5 10 -4 10 -3 10 -2 10 -1 1.0 4,0001,000 500100 5010 120100 8060 40 20 0 c, capacitance ( p f) i c , collector current (a) v ce , collector-to-emitter voltage (volts) v ce , collector to emitter voltage figure 17, capacitance vs collector-to-emitter voltage figure 18,minimim switching safe operating area 0 10 20 30 40 50 0 200 400 600 800 1000 1200 1400 10 20 30 40 50 60 70 f max , operating frequency (khz) i c , collector current (a) figure 20, operating frequency vs collector current 140 10 1 c 0es c res 0.5 0.1 0.05 f max = min (f max , f max2 ) 0.05 f max1 = t d(on) + t r + t d(off) + t f p diss - p cond e on2 + e off f max2 = p diss = t j - t c r jc c ies t j = 125 c t c = 75 c d = 50 %v ce = 800v r g = 2.2 peak t j = p dm x z jc + t c duty factor d = t 1 / t 2 t 2 t 1 p dm note: downloaded from: http:///
050-7601 rev d 7-2009 apt35gn120b_s(g) figure 22, turn-on switching waveforms and de? nitions figure 23, turn-off switching waveforms and de? nitions t j = 125c collector current collectorvoltage gate voltage switching energy 5% 10% t d(on) 90% 10% t r 5% t j = 125c collectorvoltage collector current gate voltage switching energy 0 90% t d(off) 10% t f 90% *driver same type as d.u.t. i c v clamp 100uh v test a a b d.u.t. driver* v ce figure 24, e on1 test circuit i c a d.u.t. v ce figure 21, inductive switching test circuit v cc apt40dq120 to - 247 package outline 15.49 (.610)16.26 (.640) 5.38 (.212)6.20 (.244) 6.15 (.242) bsc 4.50 (.177) max. 19.81 (.780)20.32 (.800) 20.80 (.819)21.46 (.845) 1.65 (.065)2.13 (.084) 1.01 (.040)1.40 (.055) 3.50 (.138)3.81 (.150) 2.87 (.113)3.12 (.123) 4.69 (.185)5.31 (.209) 1.49 (.059) 2.49 (.098) 2.21 (.087)2.59 (.102) 0.40 (.016)0.79 (.031) collector collector emitter gate 5.45 (.215) bsc dimensions in millimeters and (inches) 2-plcs. 15.95 (.628)16.05(.632) 1.22 (.048)1.32 (.052) 5.45 (.215) bsc{2 plcs.} 4.98 (.196)5.08 (.200) 1.47 (.058) 1.57 (.062) 2.67 (.105)2.84 (.112) 0.46 (.018) {3 plcs} 0.56 (.022) dimensions in millimeters (inches) heat sink (collector)and leads are plated 3.81 (.150)4.06 (.160) (base of lead) collector(heat sink) 1.98 (.078)2.08 (.082) gate collector emitter 0.020 (.001)0.178 (.007) 1.27 (.050)1.40 (.055) 11.51 (.453)11.61 (.457) 13.41 (.528)13.51(.532) revised8/29/97 1.04 (.041)1.15(.045) 13.79 (.543)13.99(.551) revised 4/18/95 d 3 pak package outline e1 sac: tin, silver, copper e3 sac: tin, silver, copper downloaded from: http:///


▲Up To Search▲   

 
Price & Availability of APT35GN120BG

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X